Diablo Canyon Power Plant

Michael Thomas
Assistant Executive Officer
Central Coast Water Board
MThomas@Waterboards.ca.gov

Diablo Canyon Power Plant

Five Very Difficult and Extraordinarily Contentious Issues

- Identifying and Quantifying species that are entrained (many are larval forms)
- Assessing the ecological impact
 - particularly the use and interpretation of models
- Converting impacts to a meaningful currency
- Evaluating technology options (screens, closed cooling) and costs
- Developing mitigation that accounts for direct and indirect impacts

Converting Larval Losses to Meaningful Units of Measure

- Habitat Production Foregone
 - How much habitat would it take to produce the larvae entrained?
 - 210 to 500 acres of reef
 - Provides one possible indication of impact
- Other approaches:
 - Convert entrained larvae to adults
 - Adds up to a few thousand dollars per year

Technology Evaluations

- Closed cooling
 - Fresh water towers
 - 50 million gallons per day
 - Not feasible
 - \$billions +
 - Salt water towers
 - Can't be permitted
 - Not feasible
 - \$1.3 billion +
 - Dry cooling
 - Not physically possible
 - \$3 billion +

Technology Evaluations...

- Fine Mesh Screens
 - Experimental
 - No evidence that they are better than oncethrough cooling (except wedgewire screens)
 - Never used at a facility like DCPP
 - \$650 million to \$1 billion

Mitigation

- Is it legal?
 - litigation underway
- Limited options
- Fish hatchery
 - Not applicable, usually addresses one species
- Artificial reefs
- Marine reserves

Status of Diablo Canyon Permit

- Review of mitigation options underway per Regional Board direction
 - September Board meeting
 - Record on technology already established
- Future requirements uncertain due to litigation (court decision ~ 1 year?)
- Note: State Board workshop on 316b issues scheduled for September 26 in Laguna Beach

Figure 3-1. Location of Diablo Canyon Power Plant.

Estimation of larval losses due to entrainment

- Calculate volume of cooling water entering the plant per year (V)
- Measure concentration of larvae (number per volume) that are entrained (N)
- 3. Assume no survival of larvae through the plant then
- 4. NV = the annual loss of larvae due to entrainment

The estimates of larvae entrained and the population at risk allow calculation of the Proportional Mortality (Pm) for a given species - This represents the fraction of the population at risk that is lost to entrainment

Estimation of Source Water Population

Figure 4-3. DCPP 316(b) study grid and depth contours.

Estimation of Population at Risk Step 1: Study Grid

Н	G	F	Е	D	С	В	Α
8	8	8	* 8	\ %	√ ∞ ↑	8	8
7	7 /	7	7 _	\langle	7	/	7
6	6	6	6	6	9	6	6
5	5	5	5	5	5	\mathbb{X}	5
4	X	4	4	4	4	4	4
3₹	3	j	3		3	3	3
2	\ \	2	<u></u>	2	2	2	2
1	1	/	1	14	1	1	1

DCPP Intake Cove

Figure 4-4. An example of the "ping-pong" sampling track employed in grid cell sampling; the starting cell (F1) and the initial southward direction of the transect were randomly selected. All 64 cells are sampled during the 72-hour survey period, weather permitting. DCPP's Intake Cove is located east of the juncture between cells E1 and D1.

Targeted Taxa

- Nearshore Taxa
 - Smoothhead sculpin
 - Monkey face prickleback
 - Clinid kelpfishes

- Subtidal and Pelagic Taxa
 - -Painted greenling
 - -Snubnose sculpin
 - -Cabezon
 - -Blackeye goby
 - -Pacific sardine
 - -Northern anchovy
 - -White croaker
 - -Blue rockfish
 - -KGB rockfish
 - -Sanddabs
 - -California halibut
 - Brown rock crab
 - -Slendercrab

Ecosystem effects – all the things that use planktonic organisms

Completely Unstudied

Bathymetry

80 Marine Reserves with Peer Reviewed Scientific Studies

Range in size from less than 1 square mile to 400 square miles

Large Effects
Of Reserves
Within
Their
Borders:

More biomass
More animals
Larger
animals
More species

Average numbers of babies produced by three different sizes of vermilion rockfish.

Biomass Pyramid and Entrainment Whales Adult Fish **Food Web Effects Targeted** Sampled Larvae

Entrained

